Speaker Cables

Speaker Cables

  • Cut to Length
  • Multiple Length Options
  • 25 Year Guarantee
  • Reduced Inductance Professional grade audio quality
  • Quality Cable Accredited to ECA CPR Rating
  • Speaker cable is used to connect sound systems to speakers. Our range of speaker cable includes both budget and professional options to suit individual requirements, whether domestic or commercial installation.

    Our budget range is available in Copper Clad Aluminium in 13, 42 and 79 stranded options, and this cost-effective cabling is preferred for residential and retail premises.

    Our professional range under the Securi-Flex® brand Secure Sound® is a variety of speaker cable that features a highly stranded OFC (oxygen-free copper) conductor for increased flexibility ensuring seamless winding and top audio quality. The range also features distinctive sheathing colours, making the cables more identifiable and discernible from other cables and perfectly suited for both domestic and commercial applications, where they can be laid under flooring and carpet easier.

    The benefits of using our range of speaker cable includes:

    • Budget friendly and professional grade options
    • High quality construction
    • High audio quality
    • Reduced inductance & oxygen free copper types
    • Easy installation and termination
    • Durable and flexible
    • Range of cores and standard options available
    • Range of sheath options available
    • Available for cut to length service
    • Available in multiple lengths to reduce installation time and wastage on site.
    • 25 Year Guarantee on all Securi-Flex® branded Cables
    • Accredited to ECA CPR Rating
    • If you have any questions about our speaker cable or need help, then please contact our team for assistance.
    Bend radius diagram

    The bend radius is mm

    Find a Wholesaler

    To Diameter

    Results
    AWG
    Area (mm)
    Diameter (mm)
    Does Speaker Cable Thickness and Length Affect Sound Quality?

    Does Speaker Cable Thickness and Length Affect Sound Quality?

    Understanding your speaker system’s wire thickness and length requirements is crucial to having a working setup. Cable gauges can vary depending on what the wire is used for. The sound quality of your speaker will suffer if the thickness is incorrect.The thickness of the speaker cable should be no more than 5% of the specified electrical resistance of the speaker. Impedance, or electrical current resistance, rises with cord length, hence thicker cords are required for more powerful speakers. The British Standard Wire Gauge (SWG) of wires is between 7/0 (thickest) to 50 (thinnest).Speaker Cable ThicknessA thicker cable can transmit more electricity and has less resistance or impedance. The needed wire thickness is determined by the electrical load required by the system to create best sound quality.However, a thinner wire functions just as well across a shorter distance. If the area to be covered is only a few feet, a lower gauge wire will suffice.Speaker Cable LengthThe recommended speaker cable length for your system is no more than the length required to attach the cable comfortably. If in doubt, measure using a piece of string routed in the direction you intend to put the cable before purchase. Too long is not an issue; however, too short may be uncomfortable and costly, so measure twice and install once.HIFI SystemsMost hi-fi and home cinema systems are typically setup with the equipment positioned between the front speakers. This has the potential to be beneficial. It implies that the cable length required for the speakers or front left, right, and centre speakers on a home theatre system may be reduced to a minimum. This implies that a high-quality speaker wire may be utilised to provide the finest possible sound quality without spending a fortune.Speaker Wire SetupWhen arranging the route of the speaker wire, avoid running it alongside any mains cables if feasible, and if you must cross a mains cable, attempt to do it at a 90-degree angle. However, the resistance of a speaker cable can affect performance, and the longer the wire, the greater the resistance.  

    Read more
    Best Budget Speaker Cable

    Best Budget Speaker Cable

    Best Budget Speaker Cable It is undeniable that a speaker cable can make a significant difference to your sound system.While it will not make your system better than it already is, it will ensure the performance sent from your amplifier to your speakers is the best.However, a feeble speaker cable will certainly make your system sound worse than it is already.So, choosing the right cable when you buy or upgrade a sound system is of high importance.You can wind up with a cheap, poorly built cables that waste away the potential of your valuable, and probably costly, equipment.Best Speaker CableThe most popular and utilised cables are made from copper, considering copper is a great conductor of electricity.Our recommendation for a budget speaker cable is that you opt for a wire that is copper-plated or copper-clad aluminium if you are on a budget, as they are both good substitutes for the wire composed entirely of copper.But before you choose a cable, there are a few aspects to be considered such as the quality of your sound system and the budget you have.If you have a hi-fi system, it may be worth investing in an Oxygen free copper cable to ensure the greatest quality wire.These types of cable use polyethylene insulation instead of the traditional PVC one. They suit oxygen free copper conductor ideally.Types of Speaker ConductorsIt is commonly accepted that different conductor materials have distinct sound characteristics, despite the fact that there are no discernible changes in how these materials measure in terms of frequency response. By definition, frequency response is a rudimentary metric that cannot quantify all audible, interactive, and idiosyncratic non-linearities and other features.Copper – the most common type, it sounds warmer and has more body, but it is slower and less harmonically rich Silver-plated copper – exceptionally good at carrying musical information precisely across a wide frequency range but it is a more costly option; sounds livelier and harmonically rich, but with a colder character and lighter and thinner body Pure Silver – used in professional environment Pure Gold - used in professional environment Relationship Between Conductors and InsulationThis is a critical area because pairing the wrong sort of insulation with the wrong type of conductor can result in a speaker cable acting like a tone control and bringing plenty of undesired colourations into the music you listen to.The issue with these colourations is that they might emphasise specific frequency ranges, affecting degrees of apparent detail and, more importantly, the coherence and timing of a piece of music.ConclusionChoosing a speaker cable for your sound system depends on the type of system that you have and for what purpose you use it.If it is in a more professional environment, we recommend you invest in more costly materials.However, that does not guarantee that there will be a sound improvement if your sound equipment does not already have the range to achieve it.

    Read more
    Core Materials Guide

    Core Materials Guide

    In the majority of cases, the electrical cabling around your home or business will contain pure copper, or at least mostly copper wire.The properties of these cables can vary due to the sheathing or insulation used, but cables can also perform differently when their cores are made from alternative metals.Here are some of the most common core materials available.Pure Metal CoresCopperCopper is one of the highest standard materials used for electrical conductors. Although not quite as conductive as silver, copper is a far more economical and widely supplied material, making it the standard for most cabling applications.Sometimes, copper can be hard to solder unless a ‘flux’ is used – this is a compound used in the soldering process that cleans the surface in preparation for bonding. Using a flux can result in corrosive residues being left behind, so in some cases, copper will be tinned or plated to avoid this – see more about copper-clad cables below.Pure copper, however, is the gold standard of conduction and is suited for pressure terminations too. Copper is also incredibly malleable and can be bent into any shape or direction - although the sheathing material used can have limitations on this ability.AluminiumAluminium is favoured for cable conductors due to its lightweight nature. It is slightly less conductive than copper, but when balancing this with its weight, performs on a similar level.Aluminium is also relatively inexpensive, but cannot be soldered easily, so is often plated with copper to gain the benefits of both materials in a single wire.SilverSilver is an incredibly good conductor, better than copper in fact. It is, however, substantially more expensive. Silver-plated wire is more common, as it utilises the conductive benefits of silver and allows the wire to operate over a wide temperature range (from -65°C to 200°C).There are a few niche uses where silver’s extremely low resistance is a key element – scientific instruments and cryogenics may utilise pure silver conductors for this reason.GoldGold is a common form of plating for brass connector pins – though it’s not that commonly used for cables due to the expense of the materials.Easily soldered, gold has good corrosion resistance. It’s not as good a conductor as copper and silver, but resists oxidation far better, which is why it is used as a plated layer to protect some inner components.Tinned CableTin is generally not used on its own as a cable conductor, but is used as corrosion protection for copper without affecting its conductivity. Coating a copper cable in tin can also make it far easier to solder.Nickel-PlatedNickel-plated wire also operates in extreme conditions over a wide temperature range. If the nickel-plating is thick, it can withstand temperatures up to 750°C. Nickel also acts as an excellent layer of corrosion resistance.Metal Clad CoresCopper Clad AluminiumCopper clad aluminium cable is aluminium cable plated in copper. This makes the cable less expensive than pure copper, but lighter too, as aluminium in itself is an incredibly lightweight material.However, CCA cable allows the aluminium element to gain more electrical conductivity when combining this with copper, as well as adding to the strength of pure aluminium.Copper Clad SteelCopper clad steel is comprised of a steel wire plated with copper. As copper is more expensive than steel, it allows the cable to combine the benefits of both materials for a lower price.CCS cable is not quite as conductive as pure copper, but this level of conductivity is not needed in every application. Copper clad steel wire has double the mechanical strength of solid copper wire, giving it longevity in harsher environments and under frequent movement.For more information about our range of cables, get in touch with our friendly team.

    Read more
    Braiding vs Screening vs Shielding

    Braiding vs Screening vs Shielding

    Cables use screening and shielding to protect the cable and add resistance to interference from other cables or devices.Many people often get confused between braiding, shielding, screening and other terms, so we’ve made a handy guide to what all of these types of protection mean! Shielding or Screening?Shielding and screening are the same! They are both a protective layer added over the conductors to protect the cable from, or prevent it from causing, electrical interference. Disturbance can cause lower quality signal or data loss and can therefore result in equipment failure, therefore it is essential to choose the right screening for the right purpose.Shielding and screening come in many different forms, each with a specific purpose.Types of ShieldingBraidingBraiding is when cables are woven in a lattice of thin tin or copper wire, looking like a braid as the name suggests.The coverage of the braid (often referred to as the density) depends on the number of strands or wires within each plait. It also depends on the thickness of the braid strands. The diameter of the braid wires also specifies the level of damage the cable can withstand.Braiding is used for mechanical protection against any electrical or electromagnetic interference, as well as to add strength to the cable. Braiding is usually applied either over the inner sheath if there is one, or directly over the core bundle.Braiding can be applied in different materials for very specific purposes:Copper - used for screening against electromagnetic interference Steel - used for mechanical protection Glass or Ceramic fibres - used for high temperature environments Rayon - used for torsional strength Although braided shielding can be more costly and time consuming to produce, it is flexible and versatile, and performs well at all frequency types.FoilingFoil screening involves wrapping the cable cores in aluminium or polyester laminated tape to increase durability. The foils must be in contact with a bare wire to act as an earthing point.Foil shielding can offer up to 100% coverage and can withstand high-frequency applications. It's also quick, cost-effective and easy to produce due to its lightweight nature.However it is slightly less durable than traditional braiding, so it is not recommended to use foil shielding in areas where a lot of flex is needed.ArmouringArmouring is not a form of screening, but it is a common method of protection for cables. It is often constructed by winding galvanised steel wires over the cable in the form of a spiral.Armouring is often used when cables are to be laid in an outside environment - it prevents vermin and termites from attacking and damaging the cable.Though armoured cable can be less flexible and harder to terminate, there is no better way to protect a cable from this sort of interference.For more information about cable screening, get in touch with our friendly team, or shop our wide range of cables today.

    Read more
    Sheathing Material Guide

    Sheathing Material Guide

    With a wide range of cable sheathing options available, it’s hard to know which is best for your installation.A range of factors from population density, temperature and flexibility can all impact your choice of cable.Take a look at our guide and find out all the benefits and drawbacks of the most common sheath materials on the market! PVCPVC, or polyvinyl chloride, is one of the most common sheathing options for cables. It’s low-cost to manufacture, as well as offering durability, flexibility and resistance to oil and water.PVC is suitable only for indoor use as it is vulnerable to UV light and can become brittle when exposed to bright sunlight. It gives off harmful halogen gases when burned, so is not suitable for densely populated buildings or in any situation where it may be exposed to fire.PEPE (polyethylene) is an excellent choice for outdoor cable installations, such as those involving direct burial. When UV stabilised, the material provides great resistance to moisture and extreme weather.PE is tough and rigid in comparison to other sheathing counterparts, and it does not burn but melts and reforms when cool, making it a safer option too. PE sheathing is commonly used for data transmission cables.RubberRubber is one of the most popular material choices for sheathing. It is waterproof, flexible and chemically resistant.Since rubber is more of a high-cost material, sometimes synthetic rubber compounds are used to mimic the effect without such a high price.Rubber sheathing is used when an installation requires water resistance and flexibility in extreme temperatures.LSFLSF stands for ‘Low Smoke and Fume’. This material is a modified PVC material that produces less gas and smoke than traditional PVC when the polymer is burnt.LSF sheathed cables do not meet the highest standard of fire safety (see LSZH cables) as they can still emit up to 22% Hydrogen Chloride gas, however they do meet further standards than standard PVC sheathing would (up to 28%).LSZHLSZH (Low Smoke Zero Halogen) cables are also known as ‘LS0H’ and ‘0HLS’ (Zero Halogen Low Smoke) are similar to PVC but behave differently in the event of exposure to fire.The main feature of these cables is that they do not release large amounts of toxic fumes or smoke when burned. Their fire retardance is much higher, making them often used in commercial or densely populated buildings due to their better quality and safety elements – anything they release is not harmful to humans when burned. This also means they conform to higher fire regulations than many other cables.SiliconeSilicone is a sheathing material that can operate from –50 to 180 degrees Celsius. It is resistant to heat, chemicals and even bacteria growth, making is a great choice for installations in food or medical environments.Silicone boasts UV resistance and does not produce any harmful smoke or gases when burned.This sheathing material is more expensive than most to produce and has limited options for recycling at its end of life, which doesn’t make it the best choice for everyday cabling. However, for specialist applications, its benefits cannot be beaten.PURPUR stands for polyurethane, a material that offers great chemical and mechanical resistance.PUR can be used in temperatures between –40 and 125 degrees Celsius. Some blends can be halogen free and flame retardant, but this depends entirely on the specific make up.Much like silicone, the material is resistant to bacteria growth and can therefore be used in food or medical-grade installations.PTFEPTFE, or Teflon, is a material used in applications that involve extreme temperatures or corrosive environments.Its benefits are that the material is non-toxic and environmentally friendly, as well as being flexible and non-flammable, making it a safe option for many installations.PTFE boasts thermal, chemical and electrical resistance. It can operate between –75 degrees Celsius and up to 200 degrees Celsius. It is also unaffected by most fuels, oils and fluids.FEPFEP is a fluoropolymer incredibly similar to PTFE, with similar benefits such as the ability to operate in extreme temperatures and low chemical reactivity.NeopreneNeoprene is a form of synthetic rubber. The sheathing material provides oil and chemical resistance, as well as strength and flexibility at lower temperatures.NylonNylon is an incredibly abrasive and chemically resistant material for sheathing, though less flexible that its counterparts.For more help or information regarding sheathing, get in touch with our team!

    Read more
    Enhancing Safety - LSF vs LSZH

    Enhancing Safety - LSF vs LSZH

    Understanding The Key Differences Between LSF and LSZH Cable Sheaths:In the intricate realm of the electrical industry, safety remains an unwavering priority.Amongst the many components that contribute to safety, cable sheaths play a crucial role in containing potential hazards during fire incidents.Two essential terms commonly used amongst the electrical industry are "LSF" (Low Smoke and Fume) and "LSZH" (Low Smoke Zero Halogen).While they may appear similar, it is crucial to understand the difference and purposes of each cable sheath material.Securi-Flex® knows it's important to understand the differences between the two materials. In this article, we'll examine these differences more closely.LSF Cables:Manufacturers produce LSF cables using a modified PVC compound that produces less HCL gas and smoke than regular PVC cables. LSF cables create between 15-22% of HCL gas and emit black smoke because of the presence of PVC. It is vital not to confuse LSF cables with LSZH cables, as LSF cables do contain halogen materials. They are often chosen as a cost alternative to LSZH, however they should not be confused with LSZH cables. They are not recommended for use in public or commercial buildings, as well as poorly ventilated areas. LSZH Cables:LSZH cables are manufactured using halogen-free compounds. They are effective fire retardants while emitting less than 0.5% hydrogen chloride gas and smoke when burned. During a fire, LSZH cables produce small amounts of light grey smoke and HCL gas. The absence of PVC in LSZH cables ensures no harmful fumes or black smoke are emitted during the event of a fire. Ideal for public buildings such as airports, railway stations (London Underground), computer rooms, and data centres. Low smoke generation ensures evacuation routes and signage remain visible during emergencies. Choosing the Right Cable:The choice between LSF, and LSZH cables depends on the fire risk, flexibility needs, and safety considerations.LSF cables offer a slight improvement over PVC cables but can still emit toxic gases and dense black smoke.However, LSZH cables reduce emissions and experts recommend them for high-risk areas.The CPR categorises cables by fire performance, however it doesn't cover toxic fumes and smoke.Installers must carefully choose cables appropriate for the specific fire risks in a building or application.In Summary:Understanding the differences between LSF and LSZH cables is vital for making informed decisions that prioritise safety in different scenarios.While LSF cables can offer cost advantages, they may not be suitable for critical areas, where LSZH cables are strongly recommended to ensure a safer environment during the event of a fire.Choosing the right cable can significantly contribute to enhancing overall fire safety and exposure.If you have any questions that weren't answered in this article, please do not hesitate to get in touch with our friendly team.We're always happy to help!

    Read more
    Ensuring Safe and Compliant Electrical Installations

    Ensuring Safe and Compliant Electrical Installations

    CPR and BS6701:2016+A1:2017Construction Products Regulations (CPR):The Construction Industry has witnessed significant advancements in electrical systems and technology. This in turn has led to safer and more efficient electrical installations.Various standards and regulations govern these advancements in the United Kingdom and across the European Union.Two crucial standards that play a pivotal role in ensuring electrical safety and compliance are:Construction Products Regulation (CPR) British Standard BS6701:2016+A1:2017  What is CPR?CPR, or the Construction Products Regulation, is a European Union (EU) Regulation that came into effect in 2011.The primary purpose of CPR is to harmonise the performance requirements for Construction Products, including cables, within the EU Member States.CPR Categorises Construction Products into different classes based on their performance characteristics. This Classification helps ensure that products meet specific safety and performance standards. Application to Cable Types:One of the most critical applications of CPR is in the Classification and regulation of cables used in buildings and infrastructure.CPR sets clear requirements for fire safety and reaction to the fire performance of cables.  Key Elements of CPR for Cables:Cable Classification - CPR classifies cables based on fire performance. These classes range from Aca (the highest level of fire safety) to Fca (the lowest). The Classification depends on criteria such as heat release, flame spread, and smoke production CE Marking - Cables that comply with CPR must carry the CE Marking. This indicates that the product meets required standards and is safe for use in Construction Declaration of Performance (DoP) - Manufacturers have an obligation to furnish a Declaration of Performance (DoP) for their cables. A DoP details essential information such as Product Classification, intended use, and fire performance characteristics  What is BS6701:2016+A1:2017?British Standard BS6701:2016+A1:2017 is the UK standard that provides recommendations and requirements for telecommunications cabling infrastructure within buildings:Planning Design Installation Testing Maintenance While it primarily focuses on telecommunications cabling, it also addresses key aspects of electrical safety in relation to cabling installations. Key Elements of BS6701:2016+A1:2017 Structured Cabling:The standard highlights the significance of structured cabling systems by stressing the need for organised, documented, and maintainable cabling installations.Safety: BS6701:2016+A1:2017 includes safety requirements for cabling installations to reduce the risk of electrical hazards.This includes proper grounding, bonding, and protection against overcurrent.Compliance: Compliance with this standard is critical for telecommunications cabling installations, as it ensures network performance, reliability, and safety. The Intersection of CPR and BS6701:2016+A1:2017While CPR and BS6701:2016+A1:2017 primarily address different aspects of construction products and installations.Cables used for data and telecommunications transmission are subject to:CPR Classification for fire safety BS6701:2016+A1:2017 for structured cabling requirements In the construction industry, electrical and cabling installations play a vital role in ensuring safety, efficiency, and performance. CPR and BS6701:2016+A1:2017 are integral standards that guide the design, installation, and maintenance of cables and cabling infrastructure.Compliance with these standards is a legal requirement, and a crucial step in ensuring the safety and reliability of electrical and telecommunications systems.As technology continues to advance, staying up-to-date with these standards becomes increasingly important in the construction industry.  In Summary:Securi-Flex® proudly announces our comprehensive knowledge of CPR (Construction Products Regulation).We have invested significant time and resources into understanding and adhering to these crucial regulations. This helps to ensure the highest level of safety and compliance in all our products and services.We are dedicated to keeping up with CPR regulations to ensure that our products meet the highest safety standards. This allows you to have full confidence in the reliability and quality of Securi-Flex® solutions.Securi-Flex® is your trusted source for a diverse range of Dca CPR rated cables which are in stock as standard.Securi-Flex® curates its' extensive inventory meticulously to meet the highest safety and quality standards. This ensures that your projects comply with the necessary regulations and standards.If you require CPR rated cables for the following applications, Securi-Flex® provides a wide selection of options to suit your specific needs:Residential Commercial Industrial  If you have any questions regarding CPR, please don’t hesitate to contact the Securi-Flex® team, we’re always happy to help!

    Read more