Lifting Jacks
Our cable drum jack lifter packages contain two side parts, a drum axle and centring cones, creating the perfect kit for lifting and handling cable drums that can weigh up to six tonnes! The cable drum jack includes mounting blocks that boast floating bearings, and centring cone locks on the axle, ensuring stability and preventing tipping, while also providing smoother & quieter operation.
Once assembled, our MINILIFT, EASYLIFT and JUMOBLIFT cable drum jacks operate by simply pumping the hydraulic jack, and the drum will be lifted off the ground safely and securely – this will work for cable drums with a maximum diameter of 2.2m. The chassis design facilitates easy manoeuvrability, making these heavy-duty cable drum jacks a user-friendly and efficient solution for construction sites and various applications.
Browse the options online today and find the perfect size cable drum lifting jack to make your operations more efficient!
Core Materials Guide
In the majority of cases, the electrical cabling around your home or business will contain pure copper, or at least mostly copper wire.The properties of these cables can vary due to the sheathing or insulation used, but cables can also perform differently when their cores are made from alternative metals.Here are some of the most common core materials available.Pure Metal CoresCopperCopper is one of the highest standard materials used for electrical conductors. Although not quite as conductive as silver, copper is a far more economical and widely supplied material, making it the standard for most cabling applications.Sometimes, copper can be hard to solder unless a ‘flux’ is used – this is a compound used in the soldering process that cleans the surface in preparation for bonding. Using a flux can result in corrosive residues being left behind, so in some cases, copper will be tinned or plated to avoid this – see more about copper-clad cables below.Pure copper, however, is the gold standard of conduction and is suited for pressure terminations too. Copper is also incredibly malleable and can be bent into any shape or direction - although the sheathing material used can have limitations on this ability.AluminiumAluminium is favoured for cable conductors due to its lightweight nature. It is slightly less conductive than copper, but when balancing this with its weight, performs on a similar level.Aluminium is also relatively inexpensive, but cannot be soldered easily, so is often plated with copper to gain the benefits of both materials in a single wire.SilverSilver is an incredibly good conductor, better than copper in fact. It is, however, substantially more expensive. Silver-plated wire is more common, as it utilises the conductive benefits of silver and allows the wire to operate over a wide temperature range (from -65°C to 200°C).There are a few niche uses where silver’s extremely low resistance is a key element – scientific instruments and cryogenics may utilise pure silver conductors for this reason.GoldGold is a common form of plating for brass connector pins – though it’s not that commonly used for cables due to the expense of the materials.Easily soldered, gold has good corrosion resistance. It’s not as good a conductor as copper and silver, but resists oxidation far better, which is why it is used as a plated layer to protect some inner components.Tinned CableTin is generally not used on its own as a cable conductor, but is used as corrosion protection for copper without affecting its conductivity. Coating a copper cable in tin can also make it far easier to solder.Nickel-PlatedNickel-plated wire also operates in extreme conditions over a wide temperature range. If the nickel-plating is thick, it can withstand temperatures up to 750°C. Nickel also acts as an excellent layer of corrosion resistance.Metal Clad CoresCopper Clad AluminiumCopper clad aluminium cable is aluminium cable plated in copper. This makes the cable less expensive than pure copper, but lighter too, as aluminium in itself is an incredibly lightweight material.However, CCA cable allows the aluminium element to gain more electrical conductivity when combining this with copper, as well as adding to the strength of pure aluminium.Copper Clad SteelCopper clad steel is comprised of a steel wire plated with copper. As copper is more expensive than steel, it allows the cable to combine the benefits of both materials for a lower price.CCS cable is not quite as conductive as pure copper, but this level of conductivity is not needed in every application. Copper clad steel wire has double the mechanical strength of solid copper wire, giving it longevity in harsher environments and under frequent movement.For more information about our range of cables, get in touch with our friendly team.
Braiding vs Screening vs Shielding
Cables use screening and shielding to protect the cable and add resistance to interference from other cables or devices.Many people often get confused between braiding, shielding, screening and other terms, so we’ve made a handy guide to what all of these types of protection mean! Shielding or Screening?Shielding and screening are the same! They are both a protective layer added over the conductors to protect the cable from, or prevent it from causing, electrical interference. Disturbance can cause lower quality signal or data loss and can therefore result in equipment failure, therefore it is essential to choose the right screening for the right purpose.Shielding and screening come in many different forms, each with a specific purpose.Types of ShieldingBraidingBraiding is when cables are woven in a lattice of thin tin or copper wire, looking like a braid as the name suggests.The coverage of the braid (often referred to as the density) depends on the number of strands or wires within each plait. It also depends on the thickness of the braid strands. The diameter of the braid wires also specifies the level of damage the cable can withstand.Braiding is used for mechanical protection against any electrical or electromagnetic interference, as well as to add strength to the cable. Braiding is usually applied either over the inner sheath if there is one, or directly over the core bundle.Braiding can be applied in different materials for very specific purposes:Copper - used for screening against electromagnetic interference Steel - used for mechanical protection Glass or Ceramic fibres - used for high temperature environments Rayon - used for torsional strength Although braided shielding can be more costly and time consuming to produce, it is flexible and versatile, and performs well at all frequency types.FoilingFoil screening involves wrapping the cable cores in aluminium or polyester laminated tape to increase durability. The foils must be in contact with a bare wire to act as an earthing point.Foil shielding can offer up to 100% coverage and can withstand high-frequency applications. It's also quick, cost-effective and easy to produce due to its lightweight nature.However it is slightly less durable than traditional braiding, so it is not recommended to use foil shielding in areas where a lot of flex is needed.ArmouringArmouring is not a form of screening, but it is a common method of protection for cables. It is often constructed by winding galvanised steel wires over the cable in the form of a spiral.Armouring is often used when cables are to be laid in an outside environment - it prevents vermin and termites from attacking and damaging the cable.Though armoured cable can be less flexible and harder to terminate, there is no better way to protect a cable from this sort of interference.For more information about cable screening, get in touch with our friendly team, or shop our wide range of cables today.
Sheathing Material Guide
With a wide range of cable sheathing options available, it’s hard to know which is best for your installation.A range of factors from population density, temperature and flexibility can all impact your choice of cable.Take a look at our guide and find out all the benefits and drawbacks of the most common sheath materials on the market! PVCPVC, or polyvinyl chloride, is one of the most common sheathing options for cables. It’s low-cost to manufacture, as well as offering durability, flexibility and resistance to oil and water.PVC is suitable only for indoor use as it is vulnerable to UV light and can become brittle when exposed to bright sunlight. It gives off harmful halogen gases when burned, so is not suitable for densely populated buildings or in any situation where it may be exposed to fire.PEPE (polyethylene) is an excellent choice for outdoor cable installations, such as those involving direct burial. When UV stabilised, the material provides great resistance to moisture and extreme weather.PE is tough and rigid in comparison to other sheathing counterparts, and it does not burn but melts and reforms when cool, making it a safer option too. PE sheathing is commonly used for data transmission cables.RubberRubber is one of the most popular material choices for sheathing. It is waterproof, flexible and chemically resistant.Since rubber is more of a high-cost material, sometimes synthetic rubber compounds are used to mimic the effect without such a high price.Rubber sheathing is used when an installation requires water resistance and flexibility in extreme temperatures.LSFLSF stands for ‘Low Smoke and Fume’. This material is a modified PVC material that produces less gas and smoke than traditional PVC when the polymer is burnt.LSF sheathed cables do not meet the highest standard of fire safety (see LSZH cables) as they can still emit up to 22% Hydrogen Chloride gas, however they do meet further standards than standard PVC sheathing would (up to 28%).LSZHLSZH (Low Smoke Zero Halogen) cables are also known as ‘LS0H’ and ‘0HLS’ (Zero Halogen Low Smoke) are similar to PVC but behave differently in the event of exposure to fire.The main feature of these cables is that they do not release large amounts of toxic fumes or smoke when burned. Their fire retardance is much higher, making them often used in commercial or densely populated buildings due to their better quality and safety elements – anything they release is not harmful to humans when burned. This also means they conform to higher fire regulations than many other cables.SiliconeSilicone is a sheathing material that can operate from –50 to 180 degrees Celsius. It is resistant to heat, chemicals and even bacteria growth, making is a great choice for installations in food or medical environments.Silicone boasts UV resistance and does not produce any harmful smoke or gases when burned.This sheathing material is more expensive than most to produce and has limited options for recycling at its end of life, which doesn’t make it the best choice for everyday cabling. However, for specialist applications, its benefits cannot be beaten.PURPUR stands for polyurethane, a material that offers great chemical and mechanical resistance.PUR can be used in temperatures between –40 and 125 degrees Celsius. Some blends can be halogen free and flame retardant, but this depends entirely on the specific make up.Much like silicone, the material is resistant to bacteria growth and can therefore be used in food or medical-grade installations.PTFEPTFE, or Teflon, is a material used in applications that involve extreme temperatures or corrosive environments.Its benefits are that the material is non-toxic and environmentally friendly, as well as being flexible and non-flammable, making it a safe option for many installations.PTFE boasts thermal, chemical and electrical resistance. It can operate between –75 degrees Celsius and up to 200 degrees Celsius. It is also unaffected by most fuels, oils and fluids.FEPFEP is a fluoropolymer incredibly similar to PTFE, with similar benefits such as the ability to operate in extreme temperatures and low chemical reactivity.NeopreneNeoprene is a form of synthetic rubber. The sheathing material provides oil and chemical resistance, as well as strength and flexibility at lower temperatures.NylonNylon is an incredibly abrasive and chemically resistant material for sheathing, though less flexible that its counterparts.For more help or information regarding sheathing, get in touch with our team!
Drum-Roll Catalogue
Check out the full catalogue for our brand new cable handling equipment range, Drum-Roll!
Enhancing Safety - LSF vs LSZH
Understanding The Key Differences Between LSF and LSZH Cable Sheaths:In the intricate realm of the electrical industry, safety remains an unwavering priority.Amongst the many components that contribute to safety, cable sheaths play a crucial role in containing potential hazards during fire incidents.Two essential terms commonly used amongst the electrical industry are "LSF" (Low Smoke and Fume) and "LSZH" (Low Smoke Zero Halogen).While they may appear similar, it is crucial to understand the difference and purposes of each cable sheath material.Securi-Flex® knows it's important to understand the differences between the two materials. In this article, we'll examine these differences more closely.LSF Cables:Manufacturers produce LSF cables using a modified PVC compound that produces less HCL gas and smoke than regular PVC cables. LSF cables create between 15-22% of HCL gas and emit black smoke because of the presence of PVC. It is vital not to confuse LSF cables with LSZH cables, as LSF cables do contain halogen materials. They are often chosen as a cost alternative to LSZH, however they should not be confused with LSZH cables. They are not recommended for use in public or commercial buildings, as well as poorly ventilated areas. LSZH Cables:LSZH cables are manufactured using halogen-free compounds. They are effective fire retardants while emitting less than 0.5% hydrogen chloride gas and smoke when burned. During a fire, LSZH cables produce small amounts of light grey smoke and HCL gas. The absence of PVC in LSZH cables ensures no harmful fumes or black smoke are emitted during the event of a fire. Ideal for public buildings such as airports, railway stations (London Underground), computer rooms, and data centres. Low smoke generation ensures evacuation routes and signage remain visible during emergencies. Choosing the Right Cable:The choice between LSF, and LSZH cables depends on the fire risk, flexibility needs, and safety considerations.LSF cables offer a slight improvement over PVC cables but can still emit toxic gases and dense black smoke.However, LSZH cables reduce emissions and experts recommend them for high-risk areas.The CPR categorises cables by fire performance, however it doesn't cover toxic fumes and smoke.Installers must carefully choose cables appropriate for the specific fire risks in a building or application.In Summary:Understanding the differences between LSF and LSZH cables is vital for making informed decisions that prioritise safety in different scenarios.While LSF cables can offer cost advantages, they may not be suitable for critical areas, where LSZH cables are strongly recommended to ensure a safer environment during the event of a fire.Choosing the right cable can significantly contribute to enhancing overall fire safety and exposure.If you have any questions that weren't answered in this article, please do not hesitate to get in touch with our friendly team.We're always happy to help!
Ensuring Safe and Compliant Electrical Installations
CPR and BS6701:2016+A1:2017Construction Products Regulations (CPR):The Construction Industry has witnessed significant advancements in electrical systems and technology. This in turn has led to safer and more efficient electrical installations.Various standards and regulations govern these advancements in the United Kingdom and across the European Union.Two crucial standards that play a pivotal role in ensuring electrical safety and compliance are:Construction Products Regulation (CPR) British Standard BS6701:2016+A1:2017 What is CPR?CPR, or the Construction Products Regulation, is a European Union (EU) Regulation that came into effect in 2011.The primary purpose of CPR is to harmonise the performance requirements for Construction Products, including cables, within the EU Member States.CPR Categorises Construction Products into different classes based on their performance characteristics. This Classification helps ensure that products meet specific safety and performance standards. Application to Cable Types:One of the most critical applications of CPR is in the Classification and regulation of cables used in buildings and infrastructure.CPR sets clear requirements for fire safety and reaction to the fire performance of cables. Key Elements of CPR for Cables:Cable Classification - CPR classifies cables based on fire performance. These classes range from Aca (the highest level of fire safety) to Fca (the lowest). The Classification depends on criteria such as heat release, flame spread, and smoke production CE Marking - Cables that comply with CPR must carry the CE Marking. This indicates that the product meets required standards and is safe for use in Construction Declaration of Performance (DoP) - Manufacturers have an obligation to furnish a Declaration of Performance (DoP) for their cables. A DoP details essential information such as Product Classification, intended use, and fire performance characteristics What is BS6701:2016+A1:2017?British Standard BS6701:2016+A1:2017 is the UK standard that provides recommendations and requirements for telecommunications cabling infrastructure within buildings:Planning Design Installation Testing Maintenance While it primarily focuses on telecommunications cabling, it also addresses key aspects of electrical safety in relation to cabling installations. Key Elements of BS6701:2016+A1:2017 Structured Cabling:The standard highlights the significance of structured cabling systems by stressing the need for organised, documented, and maintainable cabling installations.Safety: BS6701:2016+A1:2017 includes safety requirements for cabling installations to reduce the risk of electrical hazards.This includes proper grounding, bonding, and protection against overcurrent.Compliance: Compliance with this standard is critical for telecommunications cabling installations, as it ensures network performance, reliability, and safety. The Intersection of CPR and BS6701:2016+A1:2017While CPR and BS6701:2016+A1:2017 primarily address different aspects of construction products and installations.Cables used for data and telecommunications transmission are subject to:CPR Classification for fire safety BS6701:2016+A1:2017 for structured cabling requirements In the construction industry, electrical and cabling installations play a vital role in ensuring safety, efficiency, and performance. CPR and BS6701:2016+A1:2017 are integral standards that guide the design, installation, and maintenance of cables and cabling infrastructure.Compliance with these standards is a legal requirement, and a crucial step in ensuring the safety and reliability of electrical and telecommunications systems.As technology continues to advance, staying up-to-date with these standards becomes increasingly important in the construction industry. In Summary:Securi-Flex® proudly announces our comprehensive knowledge of CPR (Construction Products Regulation).We have invested significant time and resources into understanding and adhering to these crucial regulations. This helps to ensure the highest level of safety and compliance in all our products and services.We are dedicated to keeping up with CPR regulations to ensure that our products meet the highest safety standards. This allows you to have full confidence in the reliability and quality of Securi-Flex® solutions.Securi-Flex® is your trusted source for a diverse range of Dca CPR rated cables which are in stock as standard.Securi-Flex® curates its' extensive inventory meticulously to meet the highest safety and quality standards. This ensures that your projects comply with the necessary regulations and standards.If you require CPR rated cables for the following applications, Securi-Flex® provides a wide selection of options to suit your specific needs:Residential Commercial Industrial If you have any questions regarding CPR, please don’t hesitate to contact the Securi-Flex® team, we’re always happy to help!
Drum-Roll by Securi-Flex® - Innovative Cable Handling
This article was first published on diyweek.net on 14th August 2023. Click here for the original article. Drum-Roll, the brand-new range of cable handling equipment by Securi-Flex® is an innovative and durable range set to transform the way cables, coils and conduit are managed on site. The range, consisting of coil rollers, drum rollers, cable routing, lifting jacks and more, is built to incredibly high standards, made from sustainable metal materials and has received multiple awards for innovation.Securi-Flex® has been a dedicated supplier of specialist cables for over 25 years, catering to domestic and commercial applications. Cables have always been at the heart of what they do, and as such, they have a clear understanding of the common frustrations and potential issues that can arise during cable handling and installation.They are proud to introduce their new and unique range of cable handling equipment... Drum-Roll!The state-of-the-art Drum-Roll range has been designed and built with years of engineering expertise and is the result of their commitment to delivering innovative solutions to the electrical industry that make cable handling safer, quicker, and easier.With our Drum-Roll range, you can say goodbye to the time consuming and often hazardous task of manual handling and transporting heavy and awkward cable drums, coils, and conduit. The cutting-edge range has been designed to address these common challenges and is a must-have for any professional installer looking to improve their productivity, safety, and overall efficiency.Built to the highest standards, the range is designed to be maintenance-free and features premium materials and only the best manufacturing techniques.So, if you‘re looking for a safe, reliable, and efficient way to handle and transport cables on-site, look no further than the Drum-Roll range by Securi-Flex® - In their professional opinion, it represents the ultimate solution for cable handling needs, setting a new benchmark in the industry.YouTube Videos Link to Online Catalogue Securi-Flex® stock a range Cable Handling Equipment. For more information, the sales team are ready and waiting to take your calls and answer any questions that you may have.You can also contact us by email: [email protected]
-
Drum Length 1 EPIM SKU SFXACCDRUMEASYLIFT1 Lukins Code 435922342 -
Drum Length 1 EPIM SKU SFXACCDRUMMINILIFT1 Lukins Code 435922355 -
Drum Length 1 EPIM SKU SFXACCDRUMJUMBOLIFT1 Lukins Code 435922368